On Galois Conditions and Galois Groups of Simple Rings
نویسندگان
چکیده
منابع مشابه
GALOIS p-GROUPS AND GALOIS MODULES
The smallest non-abelian p-groups play a fundamental role in the theory of Galois p-extensions. We illustrate this by highlighting their role in the definition of the norm residue map in Galois cohomology. We then determine how often these groups — as well as other closely related, larger p-groups — occur as Galois groups over given base fields. We show further how the appearance of some Galois...
متن کاملOn the Galois Theory of Division Rings
1. Throughout this paper, K will represent a division ring and L a galois division subring. We are interested in establishing a galois theory for the extension K/L when K/L is locally finite. In order to do this one must identify the galois subrings of K containing L. An example given by Jacobson [4] shows that not every such division subring is galois. However, we obtain that each subring subj...
متن کاملGalois Action on Class Groups
It is well known that the Galois group of an extension L/F puts constraints on the structure of the relative ideal class group Cl(L/F ). Explicit results, however, hardly ever go beyond the semisimple abelian case, where L/F is abelian (in general cyclic) and where (L : F ) and #Cl(L/F ) are coprime. Using only basic parts of the theory of group representations, we give a unified approach to th...
متن کاملGeneralized affine transformation monoids on Galois rings
Let A be a ring with identity. The generalized affine transformation monoid Gaff(A) is defined as the set of all transformations on A of the form x → xu + a (for all x ∈ A), where u,a∈ A. We study the algebraic structure of the monoid Gaff(A) on a finite Galois ring A. The following results are obtained: an explicit description of Green’s relations on Gaff(A); and an explicit description of the...
متن کاملGalois Theory for Iterative Connections and Nonreduced Galois Groups
This article presents a theory of modules with iterative connection. This theory is a generalisation of the theory of modules with connection in characteristic zero to modules over rings of arbitrary characteristic. We show that these modules with iterative connection (and also the modules with integrable iterative connection) form a Tannakian category, assuming some nice properties for the und...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1965
ISSN: 0002-9947
DOI: 10.2307/1994125